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ABSTRACT

Historical Chinese character recognition is very important to larger scale historical document digitalization,
but is a very challenging problem due to lack of labeled training samples. This paper proposes a novel non-
linear transfer learning method, namely Gaussian Process Style Transfer Mapping (GP-STM). The GP-STM
extends traditional linear Style Transfer Mapping (STM) by using Gaussian process and kernel methods. With
GP-STM, existing printed Chinese character samples are used to help the recognition of historical Chinese
characters. To demonstrate this framework, we compare feature extraction methods, train a modified quadratic
discriminant function (MQDF) classifier on printed Chinese character samples, and implement the GP-STM
model on Dunhuang historical documents. Various kernels and parameters are explored, and the impact of
the number of training samples is evaluated. Experimental results show that accuracy increases by nearly 15
percentage points (from 42.8% to 57.5%) using GP-STM, with an improvement of more than 8 percentage points
(from 49.2% to 57.5%) compared to the STM approach.

Keywords: Gaussian process, style transfer mapping, historical Chinese character recognition

1. INTRODUCTION

Historical Chinese character recognition is very important to larger scale historical document digitalization and
retrieval.’ 2 Although the accuracy of printed and handwritten Chinese character recognition has improved
significantly,*® the recognition of characters from historical documents is still difficult.® Reasons include a lack
of adequate labeled training samples, large variance in writing styles across documents, and degraded character
images due to age and inappropriate preservation.?6 There are, however, extensive databases of modern printed
and handwritten characters, such as THOCR,” HCL2000,®> HIT-MW? and CASIA-HWDB.!? To make use of
these data for historical Chinese character recognition, several methods can be considered. A typical approach
is to find common features between characters from historical documents and printed characters, as done in
multitask learning.'' "' Another approach is to view this problem in the transfer learning framework, and
project from one domain to another,'*1% as is widely used in speech recognition.'®

Transfer learning uses the idea that both historical and modern character domains share the same classes,
with a difference in their styles. If a projection can be found to transform the style of one domain to the other
domain, then the two domains can share one classifier. Style transfer mapping (STM) has been proposed to
solve this problem.® STM was first applied in online handwritten Chinese character recognition.'® By a linear
transformation, writer-specific class-independent features were mapped to a style-free space, and then recognized
by a writer-independent classifier. STM was a linear regression model; however, for characters from historical
documents, linear models may be insufficient to handle severe degradation or noise. In this work we incorporate
a more powerful model, the Gaussian process model'” to extend the linear STM framework.

The Gaussian process model is a probabilistic discriminative model for regression.'® 2% In this approach, the
transformation from one domain to the other domain is non-linear. Linear regression models have been shown
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to be special cases of the Gaussian process model.'® In addition, the parameters of Gaussian process can be
learned from multiple tasks,?!:22 and kernels of the Gaussian process can also be learned.?3

In this paper, we propose a novel Gaussian process based style transfer mapping (GP-STM) model for
historical Chinese character recognition. In accordance with customary notation in transfer learning, we denote
the target dataset as the set of feature vectors of characters from Dunhuang historical documents, while the
source dataset is composed of feature vectors from printed traditional Chinese characters. A small subset of
the target dataset, called the STM training set, is used to train the coefficients of the GP-STM. The remaining
subset of the target dataset is referred to as the STM test set.

The rest of this paper will be organized as follows: Section 2 reviews the related preliminary theoretical
concepts, while section 3 presents the framework of our GP-STM model and discusses parameter selection.
Section 4 details some experiments based on our model and reports the results, and section 5 gives the conclusions
and future work.

2. PRELIMINARY

In this section, we briefly review style transfer mapping (STM) and propose our model, Gaussian Process STM
(GP-STM). The key idea of STM and GP-STM is to find a mapping method from a target dataset to a source
dataset, which can be viewed as a multivariate regression problem s = f(t), as shown in Fig. 1. In STM, the
transformation f is linear, while in GP-STM it is non-linear. The progression from STM to GP-STM follows
naturally from a kernel function perspective. The following subsections will illustrate this evolution from linear to
non-linear, going from basis functions to kernel functions, and finally using a Gaussian process to form GP-STM.
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Figure 1. Examples of regression and multivariate regression. (a) A typical example of a regression problem. Six (s, )
pairs are given and a new s, is needed when ¢, = 1.75. This can be solved by a linear or non-linear regression method.
(b) An STM problem which can be viewed as a multivariate regression problem. Both inputs and outputs are multi-
dimensional. Here inputs are characters from the target domain and outputs are from the source domain. The Chinese
characters mean the dessert, after, the emperor, name, king and from from up to down (they also have other meanings).

2.1 Linear Style Transfer Mapping

Linear STM assumes that different writing styles can be transformed by linear, or affine transformation.'® The
feature vector for character ¢ in the source style (for example written by Steven) is denoted s;; in the target style
(for example written by Tom) it is denoted t,;. Let n be the number of style pairs (s;, t;),4 = 1,...,n. The Source
dataset is defined as

S={s; eRi=1,..,n}, (1)

and the target dataset
T={ticRi=1,..,n}, (2)
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where d is the length of the feature vector. For any t; € T, we want to identify a simple linear transformation,
which can project t; to s; € S with confidence f;, namely

s;i=At; +b. (3)

Coefficients A and b are limited by the modified sum-of squared error function with regularization terms

n

i ) ) a2 T2 2
e Z;lelAtz +b =52 + Bl A — I3 +~|b||?, (4)
i—
where || - || is the matrix Frobenius norm, and 8 and « are hyperparameters. This optimization problem has

a closed-form solution for A and b

A==l . bT =45 AT, (5)
3 fitit? — %E‘ET + BI
=1
where I is the identity matrix and
n n n
F=YFi+v 8= fisi, t=) fits
1=1 =1 =1

2.2 Non-linear STM and Kernel Method

We now illustrate how linear STM can be modified to non-linear STM. For simplicity we first rewrite Eq.(3) as
a one-dimensional output s; € R!

d
S; = WTti = ijtij . (6)
j=1

The simplest way to create a non-linear transformation is to replace t; with ¢(t;), where ¢ = (¢1, ..., oar)T.
¢;(j =1,..., M) are non-linear basis functions, mapping R% to R!. The resulting non-linear form of Eq.(6) is

M
j=1
Similarly to Eq.(4), the modified sum-of squared error function with regularization terms is given as
o, Z Iw” (t:) — sil|* + A w]? (8)

This error function’s derivative with respect to the coefficient w will be linear, so the optimal coefficient w
to minimize Eq.(8) has the closed form solution

w* = @7 (@7 + \I)7's, (9)

where s = (51, ..., 5,)7 and ® = (¢(t1), ..., d(t,))7 is the n x M design matriz. Defining the kernel K = ®®7T
as an n X n symmetric matrix with elements

Kij = k(ti,t;) = ¢(t:) T (t;). (10)
Eq.(9) can be used to rewrite Eq.(7) as
S; = k(tl)T(K‘i’)\I)ilS, (11)

where k(t;) = ®¢p(t;) = (k(t1,t;), ..., k(t,,t;))T. This solves the non-linear regression problem using the
kernel method, and prepares the way to extend to a Gaussian process model.
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2.3 Gaussian Process

A Gaussian process (GP) extends a multivariate Gaussian distribution to infinite dimensions,? which means
that any n variables follow an n-variate Gaussian distribution. The covariance matrix K is defined by a kernel
function, such as Eq.(10). A widely used kernel function is the single Gaussian kernel.

Kernel 1. The Single Gaussian Kernel is

—Iti — ;]

k(tz,tj) = 90 exp |: 202
1

| +oudtes.t). (12)
where 6;(i = 1,2, 3) are non-negative parameters and d(t;, t;) is the Kronecker delta function. The covariance

matrix K is composed of all k(t;,t;), fori=1,...,nand j=1,..,n

k(t1,t1) -+ Kk(ti,t,)
K=| @
E(tn,t1) -+ k(t,,t,)

Still considering s; € R! (while t; € R? with no changes), a Gaussian process model assumes s = (s, ..., s,
follows the n-variate Gaussian distribution with a mean vector pu € R?

s~N(p, K). (14)

Now if we have a new vector t, € 7 and want to predict the corresponding s, € S, it is assumed that

HEA(AR )] -

K, = [k(ts, t1), o k(ts, t0)], Kuy = k(ts, t.). (16)

where

The optimal estimate of s, will maximize the conditional probability p(s.|s). This probability follows a
multivariate Gaussian distribution

sils ~ N (e + K.K (s — p), K. — K. K 'KT) . (17)
Thus the best estimation for s, is the mean value of this distribution

$e = s + KK (s — ). (18)

Expanding s; from 1 to d dimensions, s; € R? defined in Eq.(2), s;(i = 1, ...,n) can be written as (s;1, ..., Siq)-
Assume each dimension s;;(j = 1,...,d) has the same covariance matrix K, and denote p. = (u1, ..., 1a) to be

the mean vector of each dimension. Letting the source matrix S = (s7...,s7)7 and mean matrix Q2 be matrices
with n rows and d columns, then Eq.(18) will becomes
s = s + KK 1S - Q). (19)
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2.4 GP-STM

Based on the results in the previous subsection, we now propose our GP-STM model. Considering Eq.(19), we
treat the mean vector p, for rough approximation and the K, K~1(S — Q) term as a modification. For our
model, the source vector s, needs to be close to the target vector t., while its style should be changed to fit the
source style. Therefore, we set p, to be t., and the mean matrix € to be the extension of the mean vector of
the source vectors (8, ...,5)7. Then the GP-STM estimation of source vector s, would be

s. =t. + K.K1(S-8S). (20)

K~1(S—S) can be computed in advance, denoted as matrix A. K, is a function of t., which can be written
as f(t.). If we write t, as b(t.), then Eq.(20) can be write as

s, = Af(t,) + b(t,). (21)

This GP-STM model is similar to the STM of Eq.(3), except that a non-linear function f is added.
There are many options for kernel functions to choose besides Eq.(12). One example is the exponential kernel.

Kernel 2. The Exponential Kernel
k(ti, t;) = 6o exp(—01[t; — t;|[) + 626(t:, ;) (22)

is used in the Ornstein-Uhlenbeck Process to describe Brownian motion. If we want to incorporate a long-term
trend, another example is the double Gaussian kernel.

Kernel 3. The Double Gaussian Kernel is

It — ¢4

- —[1t; — ;2
k(ti7tj) = 9() exp |: 262 M
1

]—k@gexp{ TE
1

:| —|—92(5(ti,tj), (23)

where 03 ~ 660,. The only restriction on the kernel function is that K must be positive semi-definite for any
pair of t; and tj.lg This gives us more freedom to build our model.

3. FRAMEWORK
3.1 Framework Design

The GP-STM framework in this paper can be considered in the context of transductive transfer learning.'4
Given the source dataset S, a corresponding source classifier Cg, the target dataset 7, and a corresponding
target classifier Cp, transductive transfer learning aims to improve Crp, using the knowledge in S and Cg and a
subset of labeled data from 7.

In our framework (see Fig. 2), the source dataset includes Kaiti font from printed Chinese characters. The
STM training set includes a subset of labeled handwritten Chinese characters from Dunhuang historical docu-
ments, as seen in Fig. 2. Through GP-STM, we successfully use the source dataset and source classifier to help
improve the target classifier.

To add GP-STM in recognition system, we divide target dataset into two parts as described previously.
About 5% of the characters are used as the STM training set to learn the transformation coefficients, while the
remaining 95% forms the STM test set. Character selection can be done either randomly, or by random selection
of specific class categories from the set. In our experiments, we will show the results of both approaches.

All input character images in our experiments are binary images resized to 65 x 65, to allow concentration on
character recognition other than pre-processing. These character images are selected from pages of Dunhuang
historical documents, which includes over 11,000 images in over 1,400 classes (see Fig. 3). The source classifier
is trained by the source dataset. First, three types of features are extracted, namely 392-dimension Weighted
Direction Code Histogram (WDCH) features,?* 416-dimension Local Binary Pattern (LBP) features®® and 395-
dimension Histogram Oriented Gradient (HOG) features.?® Fisher Linear Discriminative Analysis (FLDA)?"
is used for dimension reduction, reducing the features to 128-dimension. A Modified Quadratic Discriminant
Function (MQDF) classifier®® is used for classification.
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Figure 2. The framework of GP-STM for recognition. Characters in the target dataset are to be recognized (classified).
This model is built in several steps. (1) We use the source dataset to train a classifier, named the source classifier. (2)
The STM training set is used to estimate the parameters of the GP-STM, together with the source dataset. (3) The
Target classifier is composed of the GP-STM model and the source classifier, and is used for recognition. Given a new
feature vector from the STM test set, it is first transformed by GP-STM, which projects it to source dataset, and then
classified using the source classifier. The Chinese characters mean can and until from up to down (they also have other
meanings).
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Figure 3. The figure shows how our target dataset comes from. Pages of Dunhuang historical documents are preprocessed
(such as denoising and binarization) first, and then character segmentation is used to extract the characters. The characters
are resized to 65 x 65 for recognition. Here the Chinese character means the country.

3.2 Parameter Selection

To compare with STM, We use 3 = 0.03 and v = 0.01 in STM method as suggested in Zhang’s paper.'® Because
our research is base on supervised learning, confidence f;(i = 1,...,n) is set to be %

For GP-STM with the kernel described in Eq.(12), the parameter 8 = (g, 61,602)7. 6 is the maximum
allowable covariance. ¢; controls the distance of s; and s;, where larger 6; allows more correlation with each
other and smaller 6, leads to more independence. 65 is the noise level, which can also avoid the kernel K becoming
singular. 6 is found by maximizing the posterior p(8]s,t). According to Bayes’ theorem, we can alternatively
maximizing the log likelihood function
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1 1
Inp(slt, ) = —ESTK_IS ~5 log | K| — glog 27 . (24)

To accomplish this, we need to find the gradient of the log likelihood function with respect to the parameter
vector 0. In general p(s|t,8) will not be a convex function, so it can have multiple maxima.'® Another way is
to perform cross-validation. In our model, we empirically suggest 8 to be (1,1.5,0.005)T.

For GP-STM with the kernel described in Eq.(23), 8 = (0o, 01,60, 03,04)", where two new parameter 63 and
04 are added. 6, in the second item should be larger than #;, which means that the kernel takes both short
distance and long distance into consideration. 6; and #3 control the weight between short distance and long
distance. Here, we use 3 = 0.1 x 61 and 04 = 6 X 05.

For the exponential kernel in Eq.(22), the meaning of parameters are the same as those of the single Gaussian
kernel in Eq.(12). After tuning 6 in the range [0,1], we find a proper 8 = [1,0.0011, 0].

4. EXPERIMENTS

In this section, we conduct experiments on historical Chinese character recognition. First, different types of
features are compared on both a smaller dataset and a larger dataset. After that, we compare our GP-STM
model to STM and baseline (MQDF classifier directly). Additionally, the influences on recognition accuracy due
to changes in the proportion of STM training set, the kernel types, and parameter values, are shown. Finally,
we use pixels as features directly, and visualize the results of STM and GP-STM.

4.1 STM and GP-STM

In this experiment, we use three types of features;, WDCH, LBP and HOG. We select the characters from
Dunhuang historical documents as test samples, with a smaller scale dataset of 500 classes. Results of the
feature comparison are shown in Fig. 4a.

5401 Classes Wtopl mtop2 mtop5 top10 500 Classes Wtopl mtop2 mtop5 topl0
100.00% 100.00%
=258 00% 90.00%
80.00% 80.00%
° 70.00% o 70.00%
5 60.00% 3 60.00%
g 50.00% g 50.00%
g 40.00% g 40.00%
30.00% 30.00%
20.00% 20.00%
10.00% 10.00%
0.00% 0.00%
LBP LBP
Features Features

(a) (b)

Figure 4. Feature comparison. Baseline stands for testing with a MQDF classifier directly. top1, top2, top5 and top10
mean the recognition result falls in the first 1, 2, 5 and 10 selections. In (a), a smaller dataset with 500 classes is tested.
In (b), a larger dataset with 5401 classes is tested.

After this, we test our model on a larger data set. For traditional Chinese characters, the number of level-1
characters is 5401, according to the BIG5 code standard. All 5401 classes are considered, meaning that the
model will handle all possible classes since the test samples don’t include all 5401 classes. Results of this feature
comparison are shown in Fig. 4b.

Results show that the WDCH feature achieves its best classification accuracy of 51.9% in baseline method;
LBP feature achieves its best with both STM and GP-STM, in 58.4% and 67.55%. LBP and WDCH features show
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Table 1. Accuracy rate in each model. topl, top2, top5 and topl0 means the result falls in the first 1, 2, 5 and 10
selections.

Rank | Baseline | STM | GP-STM
topl | 42.78% | 49.18% | 52.77%
top2 | 51.65% | 58.61% | 62.92%
tops | 60.19% | 68.03% | 72.52%
topl0 | 65.10% | 72.92% | 77.57%

small differences. In the test using all 5401 classes, WDCH feature outperforms other two features significantly.
In the following experiments, we use only the WDCH feature.

We can also use this experiment to compare different models. The accuracy of the 5401-class experiment
with WDCH features are shown in Table 1.

Here GP-STM model uses the kernel defined in Eq.(12). From Table 1 we can see that our GP-STM model
has a significant improvement over Baseline and STM. There is a reduction of error rate by about 10% using
GP-STM, which supports the effectiveness of our model.

4.2 Influence of Different Kernels

In this experiment, we look at the impact of the kernels used in GP-STM. Single Gaussian kernel (12), double
Gaussian kernel (23) and exponential kernel (22) are used. The results are shown in Fig. 5.

GP-STM (Single) GP-STM (Double)  m GP-STM (Exponential)
80.00%
75.00%
70.00%
g
= 65.00%
[
® 60.00%
3 55.00%
<
50.00%
45.00%
40.00%
topl top2 top5 topl10

Selection Rank

Figure 5. Influence of different kernels on recognition accuracy. top1, top2, top5 and top10 mean the recognition results
fall in the first 1, 2, 5 and 10 selections respectively.

The exponential kernel outperforms the other two kernels significantly, with a top accuracy of 57.5%, an
improvement of by 14.7 percentage points to Baseline, 8.33 percentage points to STM and 4.83 percentage
points to other kernels. There is little difference between single Gaussian kernel and double Gaussian kernel.

4.3 Influence of the Amount of STM Training Set Data

In previous experiments, we use an STM training set which contained 5% of the total samples for STM/GP-STM
training, with the remaining 95% used for STM test set to test our model. Since this is random, the STM training
set and STM test set may have a few classes in common.

Here, we make the partition without overlapped classes to see if our model has the ability of generalization.
We will tune the proportion of the classes for STM/GP-STM training, and see how this proportion influences
the accuracy rates. Experimental results are in Fig. 6.
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Figure 6. Influence of STM training set percentage.

From Fig. 6 we can see that for STM and GP-STM, the accuracy rates increases with the amount of training
data. For Baseline, the accuracy rate changes little. Overall, the result shows that knowledge of a few of classes
can successfully be transferred to other classes. As the proportion of training data increases, more style details
are learned, making the estimated feature vectors more similar to feature vectors from the source dataset.

4.4 Influence of parameter value in GP-STM

We use the exponential kernel in Eq.(22) to check the influence of parameters in GP-STM, as the top performing
model. We vary the parameter 6; while 6 is set to be 1 and 65 is 0. The experiment is considered within varying
proportions of training data. The results are shown in Fig 7.

65.00%
60.00%
Q
et
S 55.00%
& ——-prop-5%
o
5 ——prop-10%
3 50.00% PERE
< —4—prop-15%
—o—prop-20%
45.00%
40.00%
0 0.0005 0.001 0.0015 0.002

parameter-6,

Figure 7. Influence of ; on GP-STM with exponential kernel. prop-5% means 5% of samples are used for the STM
training set, with prop-10%, prop-15%, prop-20% similarly defined.

From Fig 7 we can see that, between the interval [0,0.002], the accuracy rate has a maximum with respect to
#1. The maximum value increases together with the amount of training data, while the corresponding optimal
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01 moves to zeros. This phenomenon is because a larger proportion of data for training causes the correlation
scope to be wider, causing #; to be smaller. Unfortunately, this also indicates that optimum parameter values
are data and task dependent and cannot be pre-determined.

4.5 Visualization of STM and GP-STM

In order to visualize how STM and GP-STM transform, we use the pixels of the characters directly. Character
images are first resized into 30 x 30, and then stretched into a 900 x 1 vectors. According to Eq.(5) and (20),
estimations of STM and GP-STM are computed and reshaped back into 30 x 30. The result of this visualization
can be seen in Fig. 8.

8, |

300 Target Style

30

15

Source Style

12

Figure 8. Visualization of STM and GP-STM. (a) Comparison of STM and GP-STM. Characters in the first row are
from Dunhuang historical documents, estimated characters using STM are in the second row, estimated characters using
GP-STM are in the third row, and characters from printed Chinese dataset are in the fourth row. Note that the left two
columns are from the STM test set, while the right two columns are from the STM training set. The Chinese characters
mean from, the emperor, the son and nobility from left to right (they also have other meanings). (b) Influences of 61 and
02 values of GP-STM for the Chinese character (meaning the Emperor).

From Fig. 8a we can see that, in the STM training set, GP-STM estimated characters are similar to printed
characters. In the STM test set, GP-STM estimated characters are blurred more severely, while in detail more
similar to printed characters. Overall, GP-STM has better ability for style transfer than STM, and thus has a
higher accuracy rate. From Fig. 8b we can see that, just as Sec. 3.2 discussed, larger 6; causes more transfor-
mation, sometimes with blurring. In contrast, a larger 65 keeps the vector more similar to its origin. Proper
parameters can transform the vector in target style successfully to source style, such as #; = 30 and 6, = 1073,
The process is similar to focusing with a camera, when a proper focus distance would make the scene clearer.

5. CONCLUSION

This paper presents a non-linear STM model based on Gaussian process. Experiments are conducted on Dun-
huang historical documents. Compared with the baseline system without STM, GP-STM has a significant
improvement by about 15 percentage points compared to baseline, and by 8 percentage points compared with
STM. Experiments show that our model has the ability of generalization, and that a few trained classes can
benefit the recognition of other classes. We also find that the accuracy rate increases with a larger training
set, and illustrate visualization examples for the results of STM and GP-STM. Overall, the proposed GP-STM
approaches gives significant improvements in accuracy with a strong ability to generalize.

In our paper, all models are assumed to be supervised. Semi-supervised and unsupervised models will be
considered in the future. The optimal parameters and kernels are selected through many experiments, which we
hope can be learned automatically in the future. More kernel functions of Gaussian process are to be explored.
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Other types of non-linear transformation like Deep Neural Network (DNN) or piecewise linear functions can also
be considered.
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